

Rank	View	Like	Number	Presenter	Title
	1448	40	1PL01	Susumu Tonegawa	Neuroscience of Episodic Learning and Memory
2	685	43	1EL04	Schuichi Koizumi	Control by glia of brain functions
3	648	30	3PL01	Giulio Tononi	Consciousness: From Theory to Practice
4	557	27	2PL01a	Catherine G Dulac	Neurobiology of Social Behavior
5	495	29	2EL06	Taro Toyoizumi	Theoretically studying the brain
6	471	24	2SL02m-1	Kenji Doya	What can we further learn from the brain for artificial intelligence
7	436	35	2EL04	Shigeyoshi Fujisawa	Neuronal oscillations and information processing in the hippocampus
8	421	28	4EL06	Sakiko Honjoh	Neural activity dynamics across sleep/wake cycles
9	409	40	2EL05	Makiko Yamada	Neuroscience of cognitive bias: linking mind and brain
10	406	23	2PL01m	Daniel Geschwind	Integrative Genomics in Neuropsychiatric Disorders
11	385	12	1SL02	Masanobu Kano	Shaping mature neural circuits through synapse pruning
12	373	21	3BPL02	Peter Dayan	Replay
13	353	27	2SEL06	Osamu Sakura × Yuji Ikegaya	Considering science and technology in the cultural context of public society
14	337	23	3SL02	Michisuke Yuzaki	How to build a synapse: new mechanisms by extracellular scaffolding
15	323	10	1S02m-01	Ryohei Yasuda	Imaging neuronal intracellular signal transduction using multiphoton fluorescence lifetime imaging microscopy
16	311	15	4SL02	Hideyuki Okano	Investigation of Human Neurological/Psychiatric Disorders using IPSCs and Genetically Modified Non-Human Primates
17	274	14	2SL02m-2	Noriko Osumi	Transgenerational epigenetics: a possible scenario for the onset of neurodevelopmental diseases
18	266	24	3SL01	Bosiljka Tasic	Cell types of adult mouse cortex and hippocampus
19	265	17	3EL06	Ryota Hashimoto	Trend watch for elucidation of pathological mechanisms of mental illness
20	245	13	4EL04	Takufumi Yanagisawa	Clinical application of neural decoding and brain-computer interface
21	239	7	3EL04	Takefumi Kikusui	Social Neuroendocrinology: Roles of endocrine for social formation
22	234	27	1EL05	Kazushige Touhara	Olfactory neuroscience research from a chemical point of view
23	232	9	1S02m-04	Masanori Murayama	Fast, wide and contiguous field-of-view two-photon Ca2+ imaging
24	227	19	2SEL06	Osamu Sakura	Considering science and technology in the cultural context of public society
25	223	22	1EL06	Ryohto Sawada	Mutual learning between human and AI in Shogi and its quantification
26	213	2	1P-137	Shu-Chuan Yang	Taiwanese Tield mice/Formosan wood mice (Apodemus semotus) exhibit higher levels of exploratory behaviors and central dopaminergic activities than
27	206	2	1P-136	Kun-Ruey Shieh	Taiwanese field mice/Formosan wood mice (Apodemus semotus) show less- anxious behaviors than C57BL/6 mice in the light-dark exploration test
28	205	11	3EL05	Takafumi Minamimoto	Visualizing and manipulating primate neural circuits by chemogenetic imaging
28	205	12	4EL05	Yumiko Yoshimura	Experience-dependent developmental mechanisms in the visual cortex

Rank	View	Like	Number	Presenter	Title
30	182	5	1AL02a-1	Yasushi Okada	Development of super-resolution microscopy and its application to the study of the axonal transport
31	179	15	2AL02a-1	Junichi Nabekura	Remodeling of neuronal circuits in vivo :glia-neuron interaction
32	175	14	3S08m-01	Naoshige Uchida	A normative perspective on the diversity of dopamine neurons
33	169	3	1S02m-05	Lin Tian	Imaging serotonin dynamics in living behaving animals
34	167	4	2P-060	Kazuki Shiotani	Medial Prefrontal Cortex Plays an Essential Role for Flavor Discrimination
35	150	12	2S03m-02	Shigeru Kitazawa	The here and now in the default mode network
36	145	7	1S09m-01	Aki Takahashi	Neural mechanism of social frustration and escalation of aggressive behavior
37	138	18	2S06m-01	Kenneth D Harris	Nneurons → ∞
38	136	6	4ES03a-04	Takefumi Kikusui	"Nakayoshi" strategy at a small and middle class private university
39	135	13	3S08m-02	Will Dabney	A distributional code for value in dopamine-based reinforcement learning
40	132	5	2S05m-01	Teruhiro Okuyama	Social memory representation in the hippocampus
41	128	10	4ES03a-01	Masako Myowa	Slow but steady
42	124	3	2S08m-03	Masaaki Nishiyama	Oligodendrocyte dysfunction by CHD8 haploinsufficiency shapes the core autistic-like phenotypes in mice
43	123	4	1S05m-01	Toru Ishii	Introduction: Towards an understanding of the human hippocampus
43	123	14	4ES03a-03	Kumi O. Kuroda	Blue ocean strategy + My Work-Life balance = Neurobiology of parent-infant relations
45	117	3	1S03m-01	Itaru Imayoshi	Regulatory Mechanism of Neural Stem Cells Revealed by Optical Manipulation of Gene Expressions
46	115	7	1S07a-02	Jun Yamamoto	Role of Reverberating Neural Oscillations in Entorhinal-Hippocampus Circuits during Episodic Memory Task
47	112	6	2S03a-01	Hiroaki Wake	Microglial role for creative deconstruction of brain parenchyma
47	112	1	1009m-3-02	Atsushi Sugie	Analysis of neurodegenerative process with impairment of intercellular communication using Drosophila photoreceptor as a model
49	111	12	1S04a-02	Shohei Furutachi	Synergistic modulation of sensory processing by higher-order thalamus and inhibitory interneurons in primary visual cortex
50	110	6	1AL02a-2	Takuya Takahashi	Synaptic plasticity: from bench to bedside
51	108	3	1S03a-02	Ryo Aoki	Plasticity of visual cortical circuits driven by millisecond patterned optogenetic manipulations at cellular-level resolution
51	108	7	3P-192	Kentaro Tao	Social neuronal ensemble in the ventral hippocampus
53	107	9	4AL	Michisuke Yuzaki	Neuroscience Society Young Investigator Awardees - Fiscal Year 2020 Words of Congratulations and Acceptance Speeches
54	106	3	2AL02a-2	Norio Ozaki	Elucidation of molecular pathophysiology of autistic spectrum disorder and schizophrenia starting from rare disease-susceptibility variants
55	105	10	1S08a-02	Hiroki R Ueda	Systems Biology of Mammalian Sleep/Wake Cycles ~Phosphorylation Hypothesis of Sleep~
56	104	4	1S02m-02	Liangyi Chen	Super-resolution fluorescence assisted diffraction computational tomography reveals the three-dimensional landscape of cellular organelle interactome
57	101	7	2S03m-01	Daniel S Margulies	Situating the DMN along a principal gradient of macroscale cortical organization
57	101	6	3AL02m	Haruki Takeuchi	Cell-type specific patterned activities specify gene expression patterns for olfactory circuit formation
59	98	5	3S04a-01	Stephan Lammel	Diversity of Dopamine Neurons in Reward and Aversion
59	98	1	2S05m-03	Masatoshi Inoue	Single-neuron social representations in prefrontal cortex
61	95	5	3S09a-01	Shinichiro Tsutsumi	Cerebellar cortical involvement in rapid sensorimotor associations
62	94	5	2S05m-05	Kazunari Miyamichi	Dynamics of Oxytocin Neural Circuits in Mice
63	92	7	1P-068	Masahiro Nakano	Response adaptation and deviant detection in mouse primary visual cortex

Rank	View	Like	Number	Presenter	Title
64	91	8	1S07a-03	Kenji Mizuseki	Pathway-specific information outflow from the subiculum
65	90	5	3S04a-02	Masaaki Ogawa	Neural basis of motivation to overcome negative reward prediction errors
65	90	6	3S08m-04	Paul W. Glimcher	Normalization Models of Decision-Making
65	90	2	2S05a-03	Hidehiko Takahashi	Interface between AI and schizophrenia research
68	89	5	3009m-3-01	Ayaka Kato	Encoding of an innate value of odors by dopaminergic neurons
68	89	4	1011m-1-03	Pin-Wu Liu	CaMKII-mediated subsynaptic segregation of glutamate receptors by super resolution imaging
68	89	2	1S02m-03	Lingyan Shi	High Resolution Vibrational Imaging of Brain Metabolism
71	87	13	2S06m-05	Teppei Matsui	Calcium imaging of spontaneous and stimulus-evoked activity in the marmoset visual cortex
72	84	4	1S08a-01	Arisa Hirano	Neural circuit of circadian sleep regulation in mice.
72	84	3	1S07a-01	Daoyun Ji	Hippocampal place cells and awake replay in contextual fear memory
72	84	4	4003m-04	Kengo Inada	Oxytocin neurons facilitate parental behavior in males
72	84	6	1S03m-03	Taito Matsuda	Direct reprogramming of microglia into functional neurons in the adult mouse brain
76	83	5	1S03m-05	Tatsunori Seki	To what extent does adult neurogenesis occur in the human hippocampus?
77	82	5	4S02m-02	Miho Nakajima	Attentional rules are decoded by anatomically fixed PFC output neurons
78	79	3	1S03a-05	Fumi Kubo	An Optical Illusion Pinpoints an Essential Circuit Node for Global Motion Processing
78	79	3	1S06m-07	Shinji Nishimoto	Predicting decodability: physiology, models, and individual differences
78	79	2	3P-259	Masahiro Yamamoto	The visual system knows enough to take into account Physics
81	77	6	3S08m-03	Christine Constantinople	Neural basis of dynamic risk preferences
81	77	3	3S03m-01	Rie Ishikawa	Reconsolidation and extinction engrams in medial prefrontal cortex and amygdala
83	76	5	1S09m-04	Menard Caroline	Social stress induces neurovascular cellular and molecular changes promoting depression
84	75	6	2S06m-04	Junnosuke Teramae	Dual stochasticity in the cortex as a biologically plausible learning with the most efficient coding
84	75	2	2S05a-04	Ayumu Yamashita	Resting state functional connectivity marker for major depressive disorder which generalizes to data acquired from independent imaging site.
86	74	8	2S07a-01	Yu Hayashi	Crucial roles for REM sleep in maintaining brain homeostasis as revealed from genetic and imaging approaches
86	74	10	1P-150	Akinobu Ohba	Theta-phase locked neuronal activity is necessary for memory consolidation during REM sleep
88	73	6	2S09a-05	Takeshi Ogawa	Individual trait and brain dynamics associated with creative insight
88	73	11	1P-093	Daichi Konno	Discrete spread patterns of spontaneous neural activity in the rat visual cortex
90	72	13	2S04a-01	Yuichiro Oka	Neuronal circuits of subplate neurons
90	72	3	2S03a-03	Kazuo Emoto	Molecular and cellular basis for neural circuit remodeling
92	71	2	1005m-3-01	Kaito Takashima	Hippocampal CA1 engram cells are characterized by activity reduction in a novel context during memory encoding
93	70	2	1P-145	Hirotaka Asai	The genetic construction of latent neuronal ensembles in the hippocampus for processing information
93	70	3	1S05a-06	Akihiro Yamanaka	Regulatory mechanism of sleep/wakefulness and memory
93	70	5	1P-016	Hiroyuki Sasakura	Rapid and robust recovery from spinal cord injury: cocktail treatment for rewiring and against repulsion
96	69	3	2S09a-02	Hikaru Takeuchi	Neural bases of indi individual differences of creativity
96	69	5	3S06a-03	Kei Watanabe	Identifying functional differences among frontopolar, mid-lateral, and posterior-lateral prefrontal cortices in monkeys.

Rank	View	Like	Number	Presenter	Title
96	69	6	1S08a-03	Hayato Chiba	Synchronization of neuronal oscillations on a random network
96	69	6	1S07a-04	Susumu Takahashi	Deciphering the code in the medial pallium of migratory seabirds
100	68	3	1S09m-02	Shiho Kitaoka	The roles of iron metabolism in repeated stress-induced behavioral change
100	68	0	1S03a-04	Hames H Marshel	Ensemble-specific all optical interrogation of cortical circuit dynamics underlying visually guided behavior